A₂ adenosine receptors in human glomerular mesangial cells

V. Stefanović* and P. Vlahović

Institute of Nephrology and Hemodialysis, Faculty of Medicine, B. Taskovića 48, 18000 Niš (Yugoslavia); Fax +381 18 321313

Received 27 October 1993; received after revision 4 July 1994; accepted 28 July 1994

Abstract. A_2 adenosine receptors were characterized in human glomerular mesangial cells using [3 H] 5'-N-ethylcar-boxamidoadenosine (NECA) as a tracer. There was a single group of receptor sites with a K_D of 184 nM, and a number of sites of 317 fmol/mg of cell protein. Adenosine agonists increased 5'-nucleotidase activity via A_2 receptor stimulation. The specific A_2 agonist-NECA, at 0.1 and 1 μ m, was a potent inhibitor of DNA synthesis. **Key words.** Adenosine; A_2 adenosine receptors; mesangial cells; ecto-5'-nucleotidase.

Adenosine plays an important role in the regulation of kidney function, including renal blood flow and glomerular filtration rate, hormone and neurotransmitter release, and tubular reabsorption¹. The adenosine receptors have been functionally localized in rabbit glomeruli², rabbit cortical collecting tubule (RCCT) cells³, and a RCCT-28A cell line⁴.

Previous studies by Olivera et al. have provided indirect evidence of A_1 and A_2 adenosine receptors in rat mesangial cells^{5, 6}. Exposure of mesangial cells to adenosine analogs such as NECA, 2-choroadenosine (2-CADO), R-N⁶-phenyl-isopropyladenosine (R-PIA), and N⁶-cyclohexyl-adenosine (CHA), stimulated 5'-nucleotidase activity at low concentrations of A_2 analog⁷. It has also been established that adenosine upregulates 5'-nucleotidase, the enzyme responsible for its formation, via A_2 receptor stimulation. This effect was associated with inhibition of cell growth as measured by [3 H] thymidine incorporation^{7, 8}.

Adenosine receptors have not been studied in human glomerular mesangial cells. In view of the marked species-specific properties of the glomerular mesangium⁹, we characterized A_2 adenosine receptors in human glomerular mesangial cells. We found a lesser density of A_2 adenosine receptors in human mesangial cells in comparison with rat mesangial cells, and a discrete upregulation of 5'-nucleotidase activity after exposure to A_2 analogs.

Materials and methods

Culture of mesangial cells. Human glomerular mesangial cells were isolated and characterized as previously described¹⁰. Glomeruli were prepared by differential sieving and centrifugation from the cortex of human cadaver kidney. After collagenase treatment, glomeruli

[³H]-NECA binding studies. Binding studies were performed essentially as previously described³. Cells in 12-well plates were incubated with 30–300 nM [³H]-NECA (The Radiochemical Center, Amersham, UK) and the appropriate unlabelled reagents in final volume of 500 μl of phosphate-buffered saline (PBS) pH 7.4, supplemented with 1 mM MgCl₂, at 4 °C for 60 min. Non-specific binding was measured by incubating cells in the presence of 1 mM unlabelled NECA. Specific binding was calculated by subtracting nonspecific binding from total binding. Results were expressed as fmol [³H]-NECA bound per mg of protein per 60 min.

[3 H] thymidine incorporation. Mesangial cells cultured with adenosine agonists for 48 h were treated with [3 H] thymidine (Dositek, Orsay, France) 0.5 μ Ci/well, 17 h before harvesting. Details are given elsewhere 8 .

Ecto-5'-nucleotidase assay. Enzyme activity was measured on intact cells in culture, in medium containing 30 mM Tris-HCl buffer (pH 7.4), 130 mM NaCl, 5 mM MgCl₂, and 5.5 mM glucose. Incubation was started upon addition of 3 mM 5'-AMP to the medium and continued at 37 °C for 10–20 min. The amount of liberated inorganic phosphate was determined according to the method of Gomori¹¹. Enzyme activity is expressed as nmol of inorganic phosphate liberated per min and per mg of cell protein.

Cell protein was determined according to the method of Lowry et al. ¹² using bovine serum albumin as a standard. Results are expressed as mean \pm SD. Comparisons between groups were made using analysis of variance or Student's t-test.

were seeded in Petri dishes and cultured in RPMI 1640 medium supplemented with 2 mM glutamine, 100 U/ml penicillin, 100 μ g/ml streptomycin and 10% fetal calf serum, and buffered with 20 mM HEPES at pH 7.4. Cell cultures were grown at 37 °C in a humidified 5% CO₂-95% air atmosphere. Mesangial cells which grew from glomeruli fragments were purified by successive subculture and studied after 3–5 passages.

^{*} Corresponding author.

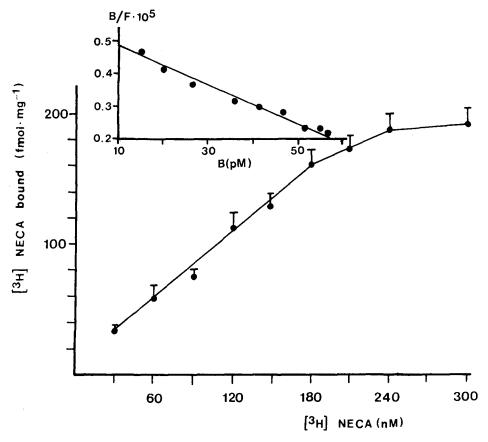


Figure. Concentration dependency of [3 H]-NECA binding to human mesangial cells. Specific [3 H]-NECA binding at 4 $^\circ$ C for 60 min is given as means \pm SD of 4 determinations. Scatchard analysis of the data (inset) indicates a single class of binding sites with a K_D of 184 nM and a B_{max} of 317 fmol/mg of cell protein.

Table 1. Effect of adenosine agonists on ecto-5'-nucleotidase activity of human mesangial cells.

Agonist	Agonist concentration, µm					
	0	0.1	1	10		
NECA 2-CADO R-PIA CHA	100 ± 7.9 100 ± 5.9 100 ± 8.4 100 ± 10.9	$ \begin{array}{c} 114 \pm 6.4 \\ 111 \pm 9.7 \\ 105 \pm 8.4 \\ 104 \pm 7.7 \end{array} $	$\begin{array}{c} 121 \pm 8.9^{a} \\ 116 \pm 5.5^{a} \\ 107 \pm 7.5 \\ 107 \pm 7.9 \end{array}$	128 ± 7.5^{a} 128 ± 8.3^{a} 110 ± 6.9 111 ± 10.6		

Mesangial cells were cultured with the agonists indicated for 48 h. Values are means \pm SD of 4 experiments, expressed as percent of basal value. Basal 5-nucleotidase activity was 84.1 \pm 7.2 nmol/min/mg. One-way analysis of variance (ANOVA) showed that ecto-5'-nucleotidase activity varied significantly (p < 0.05) with NECA and 2-CADO concentration. The effects of different analog concentrations were compared with control (0 concentration) using Student's *t*-test.

avs 0 concentration p < 0.05.

Results

First, [³H]-NECA binding was studied at 4 °C as a function of time. A plateau was reached within 60 min of incubation. Nonspecific binding was less than 30% of total binding at equilibrium. The concentration-dependency of [³H]-NECA binding to human mesangial cells was studied over the range from 30 to 300 nM of the ligand (fig.). [³H]-NECA binding followed a curvilinear ascending curve. The Scatchard plot of the data was linear, suggesting the presence of a single class of NECA binding sites. The maximum binding (B_{max})

and the K_D value derived from the Scatchard analysis were 317 fmol/mg of cell protein and 184 nM, respectively.

A modest stimulation of 5'-nucleotidase activity was observed after 48 h treatment of mesangial cells by adenosine analogs (table 1). 5'-Nucleotidase activity was significantly stimulated with NECA and 2-CADO, but not with the A₁ analogs R-PIA and CHA. NECA at concentrations of 0.1 and 1 μm markedly inhibited [³H] thymidine incorporation into mesangial cells. A small but non-significant inhibition with 1 μm 2-CADO,

Table 2. Effect of adenosine agonists on [3H] thymidine incorporation in human mesangial cells.

Agonist	Agonist concentration, µm				
	0	0.1	1	10	
NECA	100 ± 11.4	79.0 ± 7.0^{a}	76.3 ± 10.5^{a}	67.9 ± 9.8 ^b	
2-CADO R-PIA	100 ± 9.2 100 ± 3.8	103.8 ± 5.0 99 ± 5.4	89.6 ± 11.2 96 ± 2.8	$46.7 \pm 7.4^{\circ}$ $65.7 \pm 2.9^{\circ}$	
CHA	100 ± 8.4	102 ± 10.9	91 ± 11	$56 \pm 4.5^{\circ}$	

Mesangial cells were incubated with the agonists shown for 48 h. Values are means \pm SD of 4 experiments, expressed as percent of basal value. Basal [3 H] thymidine incorporation was 31,034 \pm 2631 cpm/well. One-way analysis of variance (ANOVA) showed that [3 H] thymidine incorporation varied significantly (p < 0.05) with NECA concentration. The effects of different analog concentrations were compared with control (0 concentration) using Student's t-test.

CHA and R-PIA was observed. At a concentration of $10 \mu m$ all four adenosine analogs inhibited DNA synthesis of human mesangial cells (table 2).

Discussion

Evidence is presented in this work that human glomerular mesangial cells in culture have adenosine A_2 receptors. The adenosine analog NECA, a specific A_2 -receptor agonist, was used to characterize these receptors in human mesangial cells. There was a single group of receptor sites with a K_D value of 0.184 μ M, and the number of sites was 317 fmol/mg of cell protein. The K_D value for [³H]-NECA in human mesangial cells is close to those reported with other preparations: 0.24; 0.3; 0.46 and 0.53 μ M in rat type II pneumocytes¹³, human placenta¹⁴, rabbit alveolar macrophages¹⁵ and rat mesangial cells², respectively. The number of binding sites in human mesangial cells is somewhat lower than in rat mesangial cells² or other cell preparations¹³-¹⁵.

As in rat mesangial cells, adenosine A_2 analogs stimulated ecto-5'-nucleotidase activity, an A_2 receptor-mediated effect involving cAMP accumulation⁷. In human mesangial cells, however, this effect is very moderate, as the number of A_2 receptors per cell is lower than in rat mesangial cells.

[³H] thymidine incorporation into human mesangial cells was inhibited by NECA over the same range of concentrations that stimulated 5'-nucleotidase activity. Therefore, the present study raises the question whether induction of 5'-nucleotidase activity and inhibition of cell growth, two cAMP-dependent events, are linked.

It should be noted that NECA is not a truly specific A₂ adenosine agonist. In fact, binding studies of [³H]-NECA with adenosine receptor antagonists revealed a low inhibitory potency of PD 116,948, an A₁ antagonist and a high inhibitory potency of PD 115,190, an A₂ receptor antagonist⁷.

- 1 McCoy, D. E., Bhattacharya, S., Olson, B. A., Levier, D. G., Arend, L. G., and Spielman, W. S., Semin. Nephrol. 13 (1993) 31.
- 2 Freissmuth, M., Hausleithner, V., and Tuisl, E., Naunyn-Schmiedeberg's Archs Pharmac. 335 (1987) 438.
- 3 Arend, L. J., Sonnenburg, W. K., Smith, W. L., and Spielman, W. S., J. clin. Invest. 79 (1987) 710.
- 4 Arend, L. J., Handler, J. S., Rihm, J. H., Gusovsky, F., and Spielman, W. S., Am. J. Physiol. 256 (Renal Fluid Electrolyte Physiol. 25) (1979) F1067.
- 5 Olivera, A., Lamas, P., Rodrigues-Puyol D., and Lopez-Novoa, J. M., Kidney Int. 35 (1989) 1300.
- 6 Olivera, A., Tomas, M., and Lopez-Novoa, J. M., Am. J. Physiol. 262 (Cell Physiol. 31) (1992) C840.
- 7 Stefanović, V., Vlahović, P., Savić, V., Ardaillou, N., and Ardaillou, R., FEBS Lett. 331 (1993) 96.
- 8 Savić, V., Blanchard, A. Vlahović, P., Stefanović, V., Ardaillou, N., and Ardaillou R., Archs Biochem. Biophys. 290 (1991) 202.
- 9 Sraer, J. D., Adida, C., Peraldi, M. N., Rondeau, E., and Kanfer, A., J. Am. Soc. Nephrol. 3 (1993) 1342.
- 10 Ardaillou, N., Nivez, M. P., Striker, G., and Ardaillou, R., Prostaglandins 26 (1983) 773.
- 11 Gomori, G., J. Lab. clin. Med. 27 (1942) 955.
- 12 Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R., J. biol. Chem. 193 (1951) 265.
- 13 Griesse, M., Gobran, L. I., Douglas, J. S., and Ronnly, S. A., Am. J. Physiol. 260 (Lung cell. molec. Physiol. 4) (1991)
- 14 Hutchinson, K. A., and Fox, I. H., J. biol. Chem. 264 (1989) 19898.
- 15 Hasday, J. D., and Sitrin, R. G., J. Lab. clin. Med. 110 (1987)

^avs 0 concentration p < 0.05.

bvs 0 concentration p < 0.01.

^cvs 0 concentration p < 0.001.